Le droit des gens moderne est présenté d’habitude comme une mise en forme juridique de ce qui jusqu’alors, dans la théorie de la guerre juste médiévale (de saint Augustin à saint Thomas) apparaissait comme une réflexion sur le péché, comme une théorie morale. Read More
La période moderne serait le moment charnière du passage des théories de la guerre juste à celui, objectivé et salvateur, de la guerre questionnée dans ses formes, dans sa régularité, avec les limitations strictes de la violence que cela induit.
Comment le droit des gens prend-il forme autour de cette ambition, et jusqu’où peut-on considérer qu’il s’agit là d’un mouvement unitaire et proprement moderne ? Qu’advient-il de la justice de la guerre lorsqu’elle se confronte à sa formalisation juridique ? Dans quelle mesure l’approche plus formelle qui se dessine ouvre-t-elle à des possibilités nouvelles de régulation du conflit ?
Les textes réunis dans ce volume cherchent à répondre à ces questions à partir de sources philosophiques et de problématiques variées. Des précurseurs aux figures emblématiques du droit des gens moderne, de Vitoria, Grotius, Hobbes, Leibniz ou Kant à Maistre et Hegel, de ses racines antiques et médiévales à l’idée de son crépuscule advenu avec la Grande Guerre, le tout ponctué par un dialogue critique avec Carl Schmitt, ce recueil interroge les théories de la guerre juste à l’aune de la modernité et de « son » droit des gens, et réciproquement.
I PROBABILITÉS
1 Mesures de probabilité
1.1 Expérience aléatoire, univers et événements
1.2 Tribus (sigma-algèbres)
1.3 Mesures de probabilité
1.4 Analyse combinatoire : méthodes de dénombrement
1.5 Probabilités conditionnelles et indépendance
1.6 Exercices
2 Variables aléatoires
2.1 Définition et exemples
2.2 Loi ou distribution de probabilité
2.3 Opérations sur les variables aléatoires, égalité presque sûre, égalité en distribution
2.4 Espérance mathématique
2.5 Variance et inégalité de Tchebychev
2.6 Quelques distributions discrètes classiques
2.7 Quelques distributions continues classiques
2.8 Moments et fonction génératrice des moments
2.9 Exercices
3 Vecteurs aléatoires
3.1 Définition, distribution jointe et fonction de répartition
3.2 Distribution jointe et distributions marginales
3.3 Distributions conditionnelles
3.4 Indépendance
3.5 Covariance, corrélation et matrice de variance-covariance
3.6 Courbes de régression (contexte bivarié)
3.7 Lois normales bivariées
3.8 Distributions k-variées
3.9 Exercices
4 Convergences stochastiques et théorèmes limites
4.1 Convergences stochastiques d'une suite de variables aléatoires
4.2 La loi des grands nombres
4.3 Le théorème central-limite
4.4 Exercices
II INFÉRENCE STATISTIQUE
5 Population, échantillon et vraisemblance
5.1 Observation, population et échantillon
5.2 Vraisemblance
5.3 Fonction de répartition, moments et quantiles
5.4 Exercices
6 Statistiques et lois échantillonnées
6.1 Définitions
6.2 Lois échantillonnées exactes
6.3 Lois échantillonnées asymptotiques (approchées)
6.4 Exercices
7 Estimation ponctuelle
7.1 Introduction
7.2 Propriétés d'un estimateur
7.3 Méthodes d'estimation
7.4 Exercices
8 Estimation par intervalle (de confiance)
8.1 Introduction et définition
8.2 Fonctions pivotales
8.3 Méthode générale de construction
8.4 Caractéristiques d’un intervalle de confiance
8.5 « Combien d’observations faut-il pour que... ? »
8.6 Exercices
9 Tests d’hypothèses
9.1 Procédure de test
9.2 Un exemple
9.3 Démarche générale d’un test statistique
9.4 Exercices
10 Inférence sur les moyennes et les variances
10.1 Inférence sur une moyenne et sur une variance
10.2 Comparaison de deux moyennes
10.3 Comparaison de deux variances
10.4 Exercices
11 Inférence sur les probabilités
11.1 Inférence sur une probabilité (proportion)
11.2 Comparaison de deux probabilités (proportions)
11.3 Les tests chi-carré (chi-deux)
11.4 Exercices
12 Analyse de la variance à un facteur
12.1 Définitions et exemple
12.2 Estimation des paramètres du modèle
12.3 Test de l’hypothèse d’absence d’effet-traitement
12.4 Exercices
13 Analyse de la variance à deux facteurs
13.1 Définitions et exemple
13.2 Décomposition de la somme des carrés totale
13.3 Tests d’hypothèses
13.4 Comparaisons multiples : la méthode de scheffé
13.5 Exercices
14 Modèles de régression linéaire
14.1 Introduction
14.2 Régression linéaire simple
14.3 Régression linéaire multiple : le modèle linéaire général
14.4 Exercices
ANNEXES
A.1 Compléments sur la théorie des tests d’hypothèses
A1.1 Terminologie et concepts de base
A1.2 Le lemme fondamental de Neyman-Pearson
A1.3 Tests unilatéraux à puissance uniformément maximale
A1.4 Tests bilatéraux
A1.5 Tests du rapport de vraisemblance, de Wald et du score
A1.6 Tests et intervalles de confiance
A1.7 Exercices
A.2 Introduction à la théorie de la décision statistique
A2.1 Caractérisation d’un problème d’inférence statistique
A2.2 Comparaison des règles de décision basée sur le risque
A2.3 Exercices
BIBLIOGRAPHIE
INDEX